Yıldız Teknik Üniversitesi - Çevirmen/Editör
Gözlerimiz beynimize sürekli olarak çevremizde olup bitenler hakkında bilgi gönderir. Gelen bilgi beyinde tanıyabileceğimiz nesneler biçiminde düzenlenir. Bu süreçte gözde bulunan bir dizi nöron, bilgi taşınımı için elektriksel ve kimyasal sinyaller kullanır. Ulusal Sağlık Enstitüleri'nde (İng. National Institutes of Health - NIH) fareler üzerinde yapılan bir çalışmada bir nöron türünün bu sayede nasıl hareket eden nesneleri ayırt edebildiği ortaya kondu. Buna göre, normalde öğrenme ve bellek ile ilişkilendirilen bir protein olan NMDA reseptörü, gözdeki ve beyindeki nöronlara bu bilgiyi taşımada yardımcı olabiliyor.
Araştırmadan elde edilen bulgular Neuron dergisinde yayımlanan ve baş yazarlığını Jeffrey S. Diamond'ın yaptığı bir makale ile açıklandı. "Göz hem dış dünyaya, hem de beynin içsel işleyişine açılan bir penceredir. Yaptığımız çalışma, gözdeki ve beyindeki nöronların karmaşık bir görsel dünyada hareketi algılamalarına yardımcı olması için NMDA almaçlarını nasıl kullanabileceklerini gösterdi," diyor Dr. Diamond.
Işık göze girip, göz küresinin arkasındaki retinaya ulaştığında görme başlar. Retinada bulunan nöronlar, ışığı sinirsel sinyallere dönüştürerek beyne iletir. Dr.Diamond'un laboratuvar ekibinden Dr. Alon Poleg-Polsky, fare retinası üzerinde yaptığı çalışmalar sırasında yönelimsel seçici retina ganglion hücrelerini (İng. directionally selective retinal ganglion cells - DSGC) incelemiş. DSGC hücrelerinin göze göre belli yönlerde hareket eden nesneler olduğunda ateşlenerek, beyne sinyal gönderdiği biliniyor.
Elektriksel olarak kaydedilen verilere göre bu hücrelerin bir bölümü retinaya ışık hüzmesi soldan sağa doğru düştüğünde ateşlenirken, hücrelerin diğer bir bölümü ise ışık hüzmesi retinaya ters yönde düştüğünde ateşleniyor. Daha önce yapılan çalışmalarda, bu benzersiz tepkilerin komşu hücrelerin kimyasal iletişim noktaları olan sinapslardan gönderilen sinyallerin alımı ile kontrol edildiği öne sürülmüştü. Bu çalışmada Dr. Poleg-Polsky bir sinaps kümesindeki NMDA reseptörlerinin aktivitesinin, DSGC hücrelerinin beyne yöne duyarlı bilgi gönderip göndermeyeceğini düzenleyebileceğini keşfetti.
NMDA almaçları, glutamat ve glisin nörokimyasallarına tepki olarak elektriksel sinyaller üreten proteinlerdir. Etkinleştiklerinde, elektriksel yük taşıyan iyonların tıpkı kapağı açılmış bir kanala akan su gibi hücrelerden içeri ve dışarı akışına izin verirler.
1980'lerin başlarında Fransa'da ve NIH Enstitüleri'nde yapılan çalışmalarda, nöron kuvvetle aktifleştirilmediği ve elektriksel durumu belli bir gerilimin üstüne çıkmadığı sürece magnezyumun akışı engellediği görülmüştür. Bu düzenlemenin belli öğrenme ve bellek türleri için ve ayrıca nöronlardaki sinyallerin yükseltilmesi (İng. amplify) için kritik olduğu düşünülmüştür.
Dr.Poleg-Polsky tarafından yapılan başka deneylerde de magnezyumun NMDA almaçları üzerindeki kontrolünün DSGC hücrelerinin ateşlenmesini nasıl düzenleyebildiği incelendi. Gerçek koşulları taklit etmek için Dr.Poleg-Polsky farklı arka plan ışıklarına maruz bıraktığı retinaların üzerinden ışık hüzmeleri geçirdi. Araştırma sonuçları, arka plandaki ışıkların ürettiği sinyal akışının karışmasına rağmen, geçen ışık hüzmelerine yanıt olarak hücrelerin beyne sürekli bilgi iletiminin değişken magnezyum engeli ile güvencelendiğini ortaya koydu.
NMDA almaçları hücrelerin hüzmelere verdiği tepkileri çarpımsal ölçekleme (İng. multiplicative scaling) adı verilen bir işlemle yükselterek bunu gerçekleştiriyor. "Gözdeki hücreler çarpma işlemi yapabiliyor. Bu da hücrelerin, bir kaplan aheste bir biçimde mi geziniyor; yoksa hızlı hareketlerle bir yemek peşinde mi, bunu belirlemesine yardımcı oluyor," diyor Dr.Poleg-Polsky. Bu çalışmanın sonuçları, NMDA almaçlarının nöronların bilgi iletiminde nasıl kritik bir rol oynadığını öneren ve giderek artan kanıtlar yığınını destekliyor. "Elde ettiğimiz sonuçlara bakılırsa, NMDA almaçları nöronların kendilerini ilgilendiren bilgiyi gereksiz arka plan gürültüsünden ayırmalarına yardımcı oluyor," diyor Dr.Diamond.
Araştırmadan elde edilen bulgular Neuron dergisinde yayımlanan ve baş yazarlığını Jeffrey S. Diamond'ın yaptığı bir makale ile açıklandı. "Göz hem dış dünyaya, hem de beynin içsel işleyişine açılan bir penceredir. Yaptığımız çalışma, gözdeki ve beyindeki nöronların karmaşık bir görsel dünyada hareketi algılamalarına yardımcı olması için NMDA almaçlarını nasıl kullanabileceklerini gösterdi," diyor Dr. Diamond.
Işık göze girip, göz küresinin arkasındaki retinaya ulaştığında görme başlar. Retinada bulunan nöronlar, ışığı sinirsel sinyallere dönüştürerek beyne iletir. Dr.Diamond'un laboratuvar ekibinden Dr. Alon Poleg-Polsky, fare retinası üzerinde yaptığı çalışmalar sırasında yönelimsel seçici retina ganglion hücrelerini (İng. directionally selective retinal ganglion cells - DSGC) incelemiş. DSGC hücrelerinin göze göre belli yönlerde hareket eden nesneler olduğunda ateşlenerek, beyne sinyal gönderdiği biliniyor.
Elektriksel olarak kaydedilen verilere göre bu hücrelerin bir bölümü retinaya ışık hüzmesi soldan sağa doğru düştüğünde ateşlenirken, hücrelerin diğer bir bölümü ise ışık hüzmesi retinaya ters yönde düştüğünde ateşleniyor. Daha önce yapılan çalışmalarda, bu benzersiz tepkilerin komşu hücrelerin kimyasal iletişim noktaları olan sinapslardan gönderilen sinyallerin alımı ile kontrol edildiği öne sürülmüştü. Bu çalışmada Dr. Poleg-Polsky bir sinaps kümesindeki NMDA reseptörlerinin aktivitesinin, DSGC hücrelerinin beyne yöne duyarlı bilgi gönderip göndermeyeceğini düzenleyebileceğini keşfetti.
NMDA almaçları, glutamat ve glisin nörokimyasallarına tepki olarak elektriksel sinyaller üreten proteinlerdir. Etkinleştiklerinde, elektriksel yük taşıyan iyonların tıpkı kapağı açılmış bir kanala akan su gibi hücrelerden içeri ve dışarı akışına izin verirler.
1980'lerin başlarında Fransa'da ve NIH Enstitüleri'nde yapılan çalışmalarda, nöron kuvvetle aktifleştirilmediği ve elektriksel durumu belli bir gerilimin üstüne çıkmadığı sürece magnezyumun akışı engellediği görülmüştür. Bu düzenlemenin belli öğrenme ve bellek türleri için ve ayrıca nöronlardaki sinyallerin yükseltilmesi (İng. amplify) için kritik olduğu düşünülmüştür.
Dr.Poleg-Polsky tarafından yapılan başka deneylerde de magnezyumun NMDA almaçları üzerindeki kontrolünün DSGC hücrelerinin ateşlenmesini nasıl düzenleyebildiği incelendi. Gerçek koşulları taklit etmek için Dr.Poleg-Polsky farklı arka plan ışıklarına maruz bıraktığı retinaların üzerinden ışık hüzmeleri geçirdi. Araştırma sonuçları, arka plandaki ışıkların ürettiği sinyal akışının karışmasına rağmen, geçen ışık hüzmelerine yanıt olarak hücrelerin beyne sürekli bilgi iletiminin değişken magnezyum engeli ile güvencelendiğini ortaya koydu.
NMDA almaçları hücrelerin hüzmelere verdiği tepkileri çarpımsal ölçekleme (İng. multiplicative scaling) adı verilen bir işlemle yükselterek bunu gerçekleştiriyor. "Gözdeki hücreler çarpma işlemi yapabiliyor. Bu da hücrelerin, bir kaplan aheste bir biçimde mi geziniyor; yoksa hızlı hareketlerle bir yemek peşinde mi, bunu belirlemesine yardımcı oluyor," diyor Dr.Poleg-Polsky. Bu çalışmanın sonuçları, NMDA almaçlarının nöronların bilgi iletiminde nasıl kritik bir rol oynadığını öneren ve giderek artan kanıtlar yığınını destekliyor. "Elde ettiğimiz sonuçlara bakılırsa, NMDA almaçları nöronların kendilerini ilgilendiren bilgiyi gereksiz arka plan gürültüsünden ayırmalarına yardımcı oluyor," diyor Dr.Diamond.
Kaynak ve İleri Okuma
- MedicalXpress, "Eye cells may use math to detect motion" http://medicalxpress.com/news/2016-03-eye-cells-math-motion.html
- Alon Poleg-Polsky et al. "NMDA Receptors Multiplicatively Scale Visual Signals and Enhance Directional Motion Discrimination in Retinal Ganglion Cells", Neuron (2016). http://dx.doi.org/10.1016/j.neuron.2016.02.013
Etiket
Projelerimizde bize destek olmak ister misiniz?
Dilediğiniz miktarda aylık veya tek seferlik bağış yapabilirsiniz.
Destek Ol
Yorum Yap (0)
Bunlar da İlginizi Çekebilir
06 Kasım 2014
Nöron Ölümünün Sorumlusu Amiloid Beta Değil, Amiloid Tau
07 Ağustos 2017
Biyolojik Saati Kontrol Eden Nöronlar Belirlendi
07 Ağustos 2015
Laboratuvarda Serotonin Nöronları Geliştirildi
07 Haziran 2015
Nöron Oluşturan Kök Hücreler Bulundu